22. Physik

Der Fachlehrerin, dem Fachlehrer

• werden drei Aufgaben (I, II und III) zu unterschiedlichen Schwerpunkten (s. u.) vorgelegt.

Die Abiturientin, der Abiturient

- erhält alle drei Aufgaben,
- wählt davon zwei Aufgaben aus und bearbeitet diese,
- vermerkt auf der Reinschrift und dem Aufgabendeckblatt, welche Aufgabe sie/er bearbeitet hat.
- ist verpflichtet, die Vollständigkeit der vorgelegten Aufgaben vor Bearbeitungsbeginn zu überprüfen (Anzahl der Blätter, Anlagen usw.).

Aufgabenarten:

Für die schriftliche Abiturprüfung im Fach Physik sind Aufgabenstellungen geeignet, die

- vorgeführte oder selbst durchgeführte Experimente beschreiben und auswerten lassen,
- fachspezifisches Material (z. B. Diagramme, Tabellen, dokumentierte Experimente) auswerten, kommentieren, interpretieren und bewerten lassen,
- fachspezifische Fragen beantworten lassen,
- Formeln kommentiert herleiten lassen und kommentierte Berechnungen fordern,
- fachliche Sachverhalte in historische Bezüge oder aktuelle Kontexte einordnen lassen,
- physikalische Phänomene aus Natur und Technik erklären lassen,
- begründete Stellungnahmen zu Aussagen oder vorgelegtem Material einfordern,
- strukturiertes Fachwissen in einem größeren Zusammenhang darstellen lassen,
- problembezogenes Einordnen und Nutzen von Wissen in verschiedenen inner- und außerphysikalischen Wissensbereichen ermöglichen,
- mehrere Lösungswege ermöglichen.

Arbeitszeit:

Grundlegendes Anforderungsniveau: **240** Minuten Erhöhtes Anforderungsniveau: **300** Minuten

Eine Lese- und Auswahlzeit von **30** Minuten ist der Arbeitszeit vorgeschaltet. In dieser Zeit darf noch nicht mit der Bearbeitung begonnen werden.

Hilfsmittel:

Taschenrechner (nicht programmierbar, nicht grafikfähig), Formelsammlung "Das große Tafelwerk interaktiv" (Cornelsen-Verlag), Zeichenhilsmittel, Rechtschreibwörterbuch

Die in den zentralen schriftlichen Abituraufgaben verwendeten **Operatoren** werden im Anhang genannt und erläutert. Grundlage der schriftlichen Abiturprüfung ist der Rahmenplan in der Fassung von 2009 mit den folgenden curricularen Vorgaben, Konkretisierungen und Schwerpunktsetzungen. Für die Schwerpunktthemen ist jeweils eine Unterrichtszeit von der Hälfte, höchstens aber von zwei Dritteln eines Semesters vorgesehen. Es besteht grundsätzlich Themengleichheit zwischen Kursen auf grundlegendem und erhöhtem Anforderungsniveau. Für das erhöhte Anforderungsniveau wird ein – auch qualitatives – Additum angegeben.

Es werden drei Schwerpunktthemen benannt, die verschiedene Bereiche der Physik abdecken und in etwa die Hälfte des Unterrichts bestimmen. Eine Prüfungsaufgabe erstreckt sich auf alle vier im Rahmenplan Physik beschriebenen Kompetenzbereiche. Die Aufgaben gehen von möglichst lebensnahen Kontexten aus, von denen sich die physikalisch relevanten Themen und Fragestellungen ableiten.

Zur Aufgabe I

Schwerpunkt ist das Thema:

Gravitation

Die allgemeinen Anforderungen des Rahmenplans werden inhaltlich wie folgt konkretisiert (*die Anforderungen für das erhöhte Anforderungsniveau sind kursiv gedruckt*):

Die Schülerinnen und Schüler können

- die keplerschen Gesetze und das Gravitationsgesetz erläutern und anwenden,
- Planeten- und Satellitenbahnen beschreiben und eingeschränkt auf Kreisbahnen berechnen,
- die Masse von Zentralkörpern berechnen,
- Satellitenbahnen (u. a. stationäre Bahnen) für verschiedene Zentralkörper berechnen,
- die potenzielle Energie *und die Gesamtenergie* von Körpern in Gravitationsfeldern bestimmen,
- Fluchtgeschwindigkeiten bestimmen,
- die Energieerhaltung auf elliptische Bahnen so anwenden, dass sie Bahngeschwindigkeiten von Planeten oder Kometen bestimmen können,
- mit Hilfe der Gesamtenergie eines Meteoriten bzw. Kometen analysieren, welche Bahnform (Ellipse, Parabel oder Hyperbel) seine Bewegung haben wird,
- die verschiedenen Umlaufzeiten von Monden (z. B. des Jupiters) erklären und berechnen,
- unterschiedliche Himmelskörper (Monde, Sterne, Planeten, Galaxien) klassifizieren.

Zur Aufgabe II

Schwerpunkt ist das Thema:

Wellen

Die allgemeinen Anforderungen des Rahmenplans werden inhaltlich wie folgt konkretisiert (*die Anforderungen für das erhöhte Anforderungsniveau sind kursiv gedruckt*):

Die Schülerinnen und Schüler können

- die für Wellen charakteristischen Größen Amplitude S₀, Frequenz f, Wellenlänge λ und Ausbreitungsgeschwindigkeit v und die Zusammenhänge zwischen diesen Größen benennen und beschreiben.
- Transversal- und Longitudinalwellen vergleichen,
- das Huygens'sche Prinzip erläutern,
- die Ausbreitung und Überlagerung von Wellen beschreiben,
- erklären und zeichnerisch darstellen, wie es bei der Interferenz von Wellen zu Auslöschung und Verstärkung kommt,
- die Entstehung von Interferenzmustern am Einfach-, Doppel- und Mehrfachspalt erklären,
- Interferenzmuster für Gitter und Doppelspalt quantitativ auswerten,
- den Wellencharakter des Lichts beschreiben,
- erläutern, unter welchen Bedingungen bei Teilchen Welleneigenschaften beobachtet werden können.
- De-Broglie-Wellenlängen bestimmen.
- der Lichtbeugung die Ergebnisse der Beugungsversuche mit Materieteilchen gegenüberstellen.

Zur Aufgabe III

Schwerpunkt ist das Thema:

Teilchen im elektromagnetischen Feld

Die allgemeinen Anforderungen des Rahmenplans werden inhaltlich wie folgt konkretisiert (*die Anforderungen für das erhöhte Anforderungsniveau sind kursiv gedruckt*):

Die Schülerinnen und Schüler können

- den Influenzbegriff erläutern und anwenden,
- das coulombsche Gesetz erläutern und anwenden,
- das elektrische Feld eines Plattenkondensators beschreiben,
- das Magnetfeld eines Stabmagneten und eines Hufeisenmagneten sowie eines stromdurchflossenen Leiters bzw. einer Spule beschreiben,
- den Begriff der magnetischen Flussdichte erläutern,
- die Voraussetzungen für das Auftreten von Lorentz-Kräften benennen,
- die Drei-Finger-Regel erläutern und anwenden,
- die Lorentz-Kraft für einfache Szenarien berechnen,
- den Hall-Effekt erklären und Hall-Spannungen bestimmen,
- · das elektrische und das magnetische Feld vergleichen,
- nicht-relativistische Bewegung von Teilchen in elektrischen und magnetischen Feldern beschreiben und Bahnkurven für homogene Felder berechnen, auch wenn Teilchen nicht senkrecht zu den Feldlinien in die Felder eintreten.

Anhang: Liste der Operatoren

Die in den zentralen schriftlichen Abituraufgaben verwendeten Operatoren werden in der folgenden Tabelle definiert und inhaltlich gefüllt. Entsprechende Formulierungen in den Klausuren der Studienstufe sind ein wichtiger Teil der Vorbereitung der Schülerinnen und Schüler auf das Abitur.

Neben Definitionen und Beispielen enthält die Tabelle auch Zuordnungen zu den Anforderungsbereichen (AB) I, II und III, wobei die konkrete Zuordnung auch vom Kontext der Aufgabenstellung abhängen kann und eine scharfe Trennung der Anforderungsbereiche nicht immer möglich ist.

Operatoren	AB	Definitionen
abschätzen	II-III	Durch begründete Überlegungen Größenordnungen physikalischer
		Größen angeben
analysieren,	II–III	Unter gezielten Fragestellungen Elemente und Strukturmerkmale
untersuchen		herausarbeiten und als Ergebnis darstellen
angeben,	I	Ohne nähere Erläuterungen wiedergeben oder aufzählen
nennen		
anwenden,	II	Einen bekannten Sachverhalt, eine bekannte Methode auf eine neue
übertragen		Problemstellung beziehen
aufbauen	II–III	Objekte und Geräte zielgerichtet anordnen und kombinieren
auswerten	II	Daten oder Einzelergebnisse zu einer abschließenden Gesamtaussa-
		ge zusammenführen
begründen	II-III	Einen angegebenen Sachverhalt auf Gesetzmäßigkeiten bzw. kausa-
		le Zusammenhänge zurückführen
benennen	I	Elemente, Sachverhalte, Begriffe oder Daten (er)kennen und ange-
		ben
beobachten	I-II	Wahrnehmen unter fachspezifischen Gesichtspunkten und z.B.
		skizzieren, beschreiben, protokollieren
berechnen	I-II	Ergebnisse von einem Ansatz ausgehend durch Rechenoperationen
		gewinnen
beschreiben	I-II	Strukturen, Sachverhalte oder Zusammenhänge unter Verwendung
		der Fachsprache in eigenen Worten veranschaulichen
bestimmen	II	Einen Lösungsweg darstellen und das Ergebnis formulieren
beurteilen	II-III	Hypothesen bzw. Aussagen sowie Sachverhalte bzw. Methoden auf
		Richtigkeit, Wahrscheinlichkeit, Angemessenheit, Verträglichkeit,
		Eignung oder Anwendbarkeit überprüfen

Operatoren	AB	Definitionen
bewerten	II-III	Eine eigene Position nach ausgewiesenen Normen oder Werten vertreten
durchführen	I-II	An einer Experimentieranordnung zielgerichtete Messungen und Änderungen vornehmen
einordnen, zuordnen	II	Mit erläuternden Hinweisen in einen Zusammenhang einfügen
entwerfen, planen	II-III	Zu einem vorgegebenen Problem eine Experimentieranordnung finden
entwickeln	II-III	Eine Skizze, eine Hypothese, ein Experiment, ein Modell oder eine Theorie schrittweise weiterführen und ausbauen
erklären	II-III	Rückführung eines Phänomens oder Sachverhalts auf Gesetzmäßig- keiten
erläutern	II-III	Ergebnisse, Sachverhalte oder Modelle nachvollziehbar und verständlich veranschaulichen
erörtern	II-III	Ein Beurteilungs- oder Bewertungsproblem erkennen und darstel- len, unterschiedliche Positionen und Pro- und Kontra-Argumente abwägen und mit einem eigenen Urteil als Ergebnis abschließen
herausarbeiten	II-III	Die wesentlichen Merkmale darstellen und auf den Punkt bringen
herleiten, nach- weisen, zeigen	II	Aus Größengleichungen durch logische Folgerungen eine physikalische Größe bestimmen
interpretieren	II-III	Phänomene, Strukturen, Sachverhalte oder Versuchsergebnisse auf Erklärungsmöglichkeiten untersuchen und diese gegeneinander abwägend darstellen
prüfen	II-III	Eine Aussage bzw. einen Sachverhalt nachvollziehen und auf der Grundlage eigener Beobachtungen oder eigenen Wissens beurteilen
skizzieren	I-II	Sachverhalte, Strukturen oder Ergebnisse kurz und übersichtlich darstellen mit Hilfe von z.B. Übersichten, Schemata, Diagrammen, Abbildungen, Tabellen und Texten
vergleichen, gegenüberstellen	II-III	Nach vorgegebenen oder selbst gewählten Gesichtspunkten Gemeinsamkeiten, Ähnlichkeiten und Unterschiede ermitteln und darstellen
zeichnen	I–II	Eine hinreichend exakte bildhafte Darstellung anfertigen